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Introduction
Health Insights is a product that provides
adults living in the US, with their predicted risk
of developing selected common diseases over
the next 10 years, or by the age of 80 as ap-
propriate. This risk is based on an individ-
ual’s self-reported current age, self-reported
race or ethnicity (SIRE), self-reported biolog-
ical sex at birth, and the relevant polygenic
risk score (PRS), which is derived from genetic
data obtained via an at-home, saliva-based,
self-use DNA sampling kit. Polygenic risk
scores (PRSs) provide a personalised measure
of an individual’s disease risk by combining ge-
netic risk information from across the genome
[1]. They have been shown to be useful tools
for risk stratification [2, 3, 4, 5, 6]. In addi-
tion, they can have similar or greater predictive
power compared to established clinical risk
factors, such as LDL cholesterol for coronary
artery disease [7] and can identify individuals
at equivalent or higher risk than carriers of clin-
ically relevant rare variants [8, 9].

Within Health Insights, individuals receive
disease risk estimates for up to seven dis-
eases: atrial fibrillation (AF), cardiovascular
disease (CVD), hypercholesterolemia (HCH;
high low-density lipoprotein cholesterol), hy-
pertension (HT; high blood pressure), osteope-
nia (low bone density), type 2 diabetes (T2D)

and one of breast (BrC) or prostate cancer
(PrC). In addition to receiving the risk esti-
mates, a digital service can be used by in-
dividuals to support lifestyle actions to mit-
igate the risk of diseases. A laboratory re-
port is also provided for use by health profes-
sionals, who can use the risk estimates to in-
form their recommendations to an individual
regarding engagement with state of the art dis-
ease prevention strategies and screening pro-
grams. This product builds on a successful
pilot study1, which found that understanding
personal risk of disease supports engagement
with healthy behaviours, with 69.9% of all par-
ticipants planning to take, or having already
taken, action within four months of participat-
ing in the study, rising to 78.4% of individuals
amongst those classified as high risk for at
least one disease (from a possible three dis-
eases within the pilot).

A PRS measures the relative disease risk
for an individual from inherited, common ge-
netic variants. This becomes more powerful
when combined with other relevant risk fac-
tors, in an integrated risk tool (IRT), to gener-
ate estimates of absolute risk: the probabil-
ity of being diagnosed with a disease within a
specified time period [7, 10]. The use of abso-
lute risk scores is already established in sev-
eral clinical contexts, such as the pooled co-
hort equation risk score, which measures risk
for cardiovascular disease, used in the context

1The pilot study returned a genetic risk report to 1044 individuals. Up to 3 disease risks were returned per participant: 10
year risk of cardiovascular disease, 10 year risk of type 2 diabetes, lifetime risk of breast cancer (women), and lifetime risk
of prostate cancer (men). Participant satisfaction and feedback was assessed via an initial survey (Questionnaire A, 489
respondents), a post genetic counselling survey (Questionnaire B, 18 respondents), and a 4-month survey (Questionnaire C,
532 respondents).
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of shared decision making about preventative
medication with statins and other cholesterol-
lowering drugs [11, 12].

In this paper, we describe how the PRSs
and IRTs used within Health Insights are gen-
erated and validated. Health Insights com-
bines optimised, proprietary PRS, which are
well-powered across all ancestry groups, with
estimates of disease incidence that are up-
to-date and relevant for the specific country,
sex, age, and race or ethnicity of an individual
(as defined by descriptors included within the
US census, augmented for individuals of East
Asian, South Asian and South East Asian race
or ethnicity). We show that the Health Insights
IRTs are well calibrated, meaning, for example,
that 30% of individuals identified as having a
risk of 30% do go on to have a diagnosis of the
relevant disease in the specified time period.
Such strong calibration is essential for provid-
ing users and health-care professionals with
the confidence to act on the information pro-
vided. We also show that inclusion of the PRS
improves predictive performance compared to
the baseline model (which does not include
the PRS), across multiple ethnicities for which
there is data, within well-powered US and UK
validation cohorts. These results establish the
added value of using PRS to inform about dis-
ease risks.

We apply this approach across eight dis-
eases included in the Health Insights product.
These diseases were selected on the basis
that they are common within the population
(average lifetime risk of at least 10%), across
sexes (excluding sex-specific diseases) and
racial/ethnic groups, costly to society, and
can be mitigated by lifestyle changes and/or
accessing readily-available medical pathways
and screening programs. It is expected that
80% of individuals using Health Insights will be
informed of being at increased risk for at least
one disease.

Methods
Genetic ancestry and self-identified
race or ethnicity

Previous work has established the importance
of, and distinction between, genetically in-
ferred ancestry (the fraction of someone’s
genome that has descended from ancestors
who lived in a particular region of the world at a
particular point in time) and self-identified race
or ethnicity (a social identity relating to shared
background, behaviours, beliefs and practices)
in calculating IRTs [13]. Within Health Insights,
both aspects of an individual’s identity are
used in the construction of risk estimates.

For genetic ancestry, individuals are as-
signed to one of five high-level ancestry groups
based on the principle genetic similarity be-
tween their genome and a set of reference
genomes: European (EUR), East Asian (EAS),
South Asian (SAS), Sub-Saharan African (AFR),
and Native/Indigenous American (AMR) [6, 13,
14]. These groups are used to estimate the pre-
dictive weight assigned to the PRS in each an-
cestry group (technically measured as odds ra-
tio associated with each standard deviation of
the PRS; see methods section below for more
details).

Self-identified race or ethnicity (SIRE)
as reported by individuals, along with self-
reported age, sex assigned at birth and
country-of-origin is used to define context-
specific baselines for disease risk. For the
US, racial/ethnicity categories are based on
the US census, and accordingly we use White
Hispanic, White non-Hispanic, White prefer-
not-to-say (PNTS), Black Hispanic, Black
non-Hispanic, Black prefer-not-to-say (PNTS),
South Asian, East Asian, South East Asian,
American Indian or Alaskan Native (AIAN), Na-
tive Hawaiian or other Pacific Islander (NHPI)
and Hispanic SIREs. For the UK (when required
for validation purposes), we use White, Black
African, Black Caribbean, Black Other, South
Asian and East Asian SIREs. If the individual
does not provide their SIRE and/or sex, SIRE-

© 2023 Genomics plc — All rights reserved 2



averaged and/or sex-averaged baselines are
used.

Polygenic risk scores

PRS are derived by meta-analysing [15]
disease-appropriate genome-wide associa-
tion study (GWAS) summary statistics, en-
suring that there is no overlap between sam-
ples used for PRS training, calculating PRS
effect sizes within an IRT, baseline derivation
and PRS or IRT validation. We use proprietary
methods [6] to calculate PRS, including a com-
putational approach related to the published
LDpred method [16]. Our methodology esti-
mates the genome-wide contribution to dis-
ease risk, and spreads this risk across a large
number of genetic variants (between two and
five million variants, depending on the trait).
PRS are computed for each individual using
the resulting PRS weights, then centered and
standardised to ensure consistent mean and
standard deviation across the major ancestry
groups described above [2].

PRS computed using Genomics’ methods
for 25 diseases and 28 quantitative traits have
been previously released in the UK Biobank
resource [6]. Detailed assessment of these
scores shows them to outperform most pub-
lished PRS algorithms [6]. This improved per-
formance of the Genomics methods is a con-
sequence both of the use of Genomics’ data
resources (the internal data platform, which in-
tegrates summary statistics from tens of thou-
sands of GWAS studies, augmented with sum-
mary statistics from collaborators), and of its
improved methodology for deriving PRS from
GWAS summary statistics.

Assessment of PRS performance
We assess the ability of PRS to distinguish
between people with and without disease, or
with different values of a quantitative trait, us-
ing the Area Under the receiver operator chan-
nel Curve (AUC) [17] for binary traits and the
proportion of trait variance explained (R2) for
quantitative traits, considering models where

we regress the PRS against the disease status
in the absence of any covariates as a measure
of standardised performance. The Health In-
sights PRS AUC displayed in Figures 1 and 3
are the meta-analysed results across all avail-
able cohorts (apart from osteopenia where
we use the UK Biobank cohort for all ances-
tries, excepting Native Americans, since this is
the only cohort to contain both genders, and
the Women’s Health Initiative cohort for Native
Americans, as this is the only cohort available
for that ancestry). The comparator AUC num-
bers are as published by several other organ-
isations (also considering models where the
PRS is regressed against disease status in the
absence of any covariates); see Supplemen-
tary Table 1 for AUC values and sources.

Estimation of absolute risk
We estimated absolute risk using an approach
similar to that presented by Gail et al. [18], ap-
propriately accounting for the probability that
someone has not been previously diagnosed
with the disease and has not died from other
causes. Calculation of an absolute risk score
that does not account for an individual’s PRS,
which we call a ‘baseline model’, requires ap-
propriate baseline rates of disease (see be-
low). In addition, to calculate an absolute risk
score that accounts for an individual’s PRS,
which we refer to as an ‘integrated risk tool
(IRT) model’, we require an effect size associ-
ated with each unit increase of the PRS.

Baselines
US appropriate disease incidence, all-cause
mortality and disease-specific mortality base-
lines were compiled for each disease for all of
the relevant US SIREs and likewise for a subset
of diseases for the UK, where UK prospective
cohort data was used for validation purposes.
Baselines are constructed to account for the
fact that an individual’s age is rounded down
to the nearest integer.

PRS effect sizes
Where available training data has at least 100
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cases and 100 controls, the odds ratio (OR) per
standard deviation of the PRS was directly es-
timated within each of the five high-level an-
cestry groups (EUR, EAS, SAS, AFR, AMR). For
ancestry groups with insufficient data, we lin-
early interpolated the OR based on the prin-
cipal component projection of an individual’s
genome.

Validation cohorts
We evaluated the performance of our in-
tegrated risk tools (IRTs) in independent
prospective cohorts. We used subsets of UK
Biobank (UKB) non-overlapping with training
samples [19] for cancer traits, the Study of Os-
teoporotic Fractures (SOF) [20] and the Osteo-
porotic Fracture in Men Study (MrOS) [21] for
osteopenia, and Atherosclerosis Risk in Com-
munities (ARIC) [22] for the remaining traits.
For UKB, ARIC, SOF and MrOS, we use self-
reported race or ethnicity information to map
to appropriate SIRE categories. For the SOF,
MrOS and ARIC cohorts, we use White PNTS
and Black PNTS baselines (as Hispanic infor-
mation for individuals of White and Black SIRE
is not available), which we shorten henceforth
to “White” and “Black”, respectively.

IRT calibration methods and statistics
We use a variety of approaches and metrics to
measure IRT calibration. The following defini-
tions are used:

Censored follow up time
The follow-up time available (with a limit at the
relevant prediction period) for each individual
in validation data. If the full follow up time is
not available, we use the maximum follow up
time that is available. For osteopenia, where
we predict risk at a given age, there is no fol-
low up time.

Censored absolute risk score
The individual absolute risk score, adjusted to
match the relevant censored follow up time.
For osteopenia, where there is no follow up

time, we predict the risk for the age at which
the individual had their femoral neck bone min-
eral density measurement taken.

O/E
The ratio of the observed number of dis-
ease onset events to the expected number
of events: Observed number of incident cases

Expected number of incident cases
[23, 24]. The observed number of cases is the
number of individuals that are incident cases
within the censored follow up time periods.
The expected number of cases is given by
summing the censored absolute risk scores.
Ignoring statistical fluctuations in estimation,
if O/E=1, this means that the number of ob-
served events matches the number of ex-
pected events. If O/E>1 or <1, this means that
risk of developing a disease is being under- or
over-estimated, respectively.

Calibration intercept and slope
The slope and intercept of the curve obtained
by fitting a logistic regression of the observed
case control status at the end of the censored
follow up time against the censored absolute
risk score. Ignoring statistical fluctuations in
estimation, if the calibration slope >1, then
there is insufficient spread in the risk predic-
tions whereas the converse is true if the cal-
ibration slope <1 [24]. The intercept can be
interpreted analogously to the O/E statistic
(though, in this case, an intercept of 0 means
that the expected and observed numbers of
cases agree).

95% confidence intervals (CI’s)
95% CIs were obtained using 2,000 bootstrap
samples.

IRT performance metrics
We assessed the IRT’s ability to distinguish
between individuals with and without disease
using Harrell’s C statistic, which is a rank-
based concordance metric that measures how
well a risk score (specifically the uncensored
risk score) is able to predict the observed se-
quence of events [25]. Values range between 0
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and 1, with 0.5 the expected value if risk scores
were assigned at random, and 1 representing
a score that is perfectly able to predict the or-
der of events. Harrell’s C statistic is not an
appropriate statistical measure to use for re-
maining lifetime risk [26, 27] and as a result
for this risk duration we report Harrell’s C for
10 year and total lifetime risk. Survival time
is the minimum of the time to diagnosis and
the censored follow up time as defined above;
cases for which the age at diagnosis is un-
known are excluded from this metric. In the
case of osteopenia, where there is no follow
up time, Harrell’s C statistic is calculated us-
ing the predicted risk for the age at which the
femoral neck bone mineral density measure-
ment was taken, along with their disease sta-
tus at this age.

Results
Health insights PRS are predictive of
disease in all major ancestry groups
and outperform alternative risk scores

Assessment of the predictive performance of
the PRSs derived for use in Health Insights
shows that these are predictive of disease in
all five major ancestry groups (where we have
available data) for each of the eight Health In-
sights diseases (Figures 1 and 2). We note that
for AF and T2D, where there are gaps in data
availability, the PRS is predictive in individuals
of AFR ancestry and so very likely to be pre-
dictive across all ancestries based on broader
patterns observed in the portability of PRS

Figure 1: Predictive performance of Health Insights PRS within the five high level ancestry groups (European
in black, African in yellow, East Asian in pink, South Asian in blue and Native American in green) where data
is available. Predictive performance is measured using proportion of variance explained (R2) for osteopenia
where we are measuring the predictive performance of the underlying quantitative trait (bone mineral density)
and area under the receiver operating channel curve (AUC) for all other traits. Error bars correspond to the 95%
confidence intervals.
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across populations [28, 29].
Thus the PRS included within Health In-

sights have utility for all individuals regardless
of ancestral background.

In addition, the Health Insights PRS outper-

form those developed by third parties (where
available) within individuals of EUR ancestry
(Figure 3), demonstrating the added value of
the Genomics plc data resource and propri-
etary methods.

Figure 2: Cumulative disease incidence plot illustrating the predictive performance of the PRS in individuals
of European ancestry in the UK Biobank cohort (using an independent subset of individuals from those used
to train the PRS; ∼85K individuals for breast cancer, ∼75K individuals for prostate cancer and ∼160K individ-
uals for the other diseases). Colours indicate individuals in the highest 3% (red), median 40-60% (green) and
lowest 3% (blue) of the PRS distribution. Shadings indicate 95% confidence intervals. All individuals of Euro-
pean ancestry with appropriate bone mineral density measurements within UK Biobank were used to train the
osteopenia PRS, hence no plot for osteopenia is included.
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Figure 3: Predictive performance of Health Insights PRS (black) compared to 23andMe1 (orange) and Color
Health2 (blue; see Methods and Supplementary Table 1 for further details) for traits where these are available
evaluated within individuals of European ancestry. Predictive performance is measured using area under the re-
ceiver operating channel curve (AUC). Error bars correspond to the 95% confidence intervals for Health Insights
PRS and are not available for 23andMe and Color Health.

1Atrial fibrillation and hypertension: https://permalinks.23andme.com/pdf/23 21-PRSMethodologyAppendix May2020.
pdf, May 2020
Type 2 diabetes: https://permalinks.23andme.com/pdf/23 19-Type2Diabetes March2019.pdf, March 2019

2Atrial fibrillation and breast cancer: https://www.color.com/wp-content/uploads/2020/04/2019 Homburger et al
Genome Medicine.pdf, November 2019

Health Insights disease risk estimates
account for variation in disease risk by
country, age, sex, race/ethnicity and
adjust for competing mortality

Health Insights PRS are combined with base-
line rates of disease through an IRT such that
individuals receive their absolute risk of devel-
oping a disease. Baseline rates of disease cap-
ture socioeconomic determinants of health
and as such vary over time, between countries
and by ethnic groups (Figure 4). We therefore
construct US-specific baselines using appro-
priate data sources that are race or ethnicity
specific, at a minimum matching the granular-
ity of the US census (including minority ethnic
groups such as AIAN and NHPI) and, where ap-
propriate, further separating the Asian ethnic
group into East, South and South East Asian

categories (Figure 4b).
Health Insights baselines capture disease

incidence, disease specific mortality and all
cause mortality broken down into one year
age intervals, accounting for disease-specific
mortality where appropriate using a compet-
ing synthetic risk model [18] and thus avoid-
ing underestimation of disease risk. This ef-
fect is particularly important for diseases such
as CVD, where a substantial fraction of indi-
viduals die from the disease before age 80;
such deaths would not be captured using an
approach that simply uses disease prevalence
baselines.

Finally, to ensure that the results individ-
uals receive as part of Health Insights are
aligned with the United States Preventive Ser-
vices Task Force guidelines, we provide risk
scores tailored to the individual’s current age.
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Figure 4: Baseline disease incidence for each one year age interval for two Health Insights diseases for selected
self-identified races or ethnicities (SIREs). a) Prostate cancer in US individuals of White non-Hispanic (black)
and Black non-Hispanic (yellow) SIRE based on data obtained from Surveillance, Epidemiology, and End Results
[32] and UK individuals of White (orange) and Black (blue) SIRE based on data obtained from Cancer Research
UK and from Delon et al. [33] and b) type 2 diabetes in female US individuals of American Indian or Alaskan
Native (AIAN, black), Native Hawaiian or Other Pacific Islander (NHPI, pink), South East Asian (grey), East Asian
(blue), South Asian (green) and White non-Hispanic (yellow) SIRE based on data obtained from the National
Health Interview Survey.

Health Insights IRT models are
strongly calibrated

We assess the accuracy of the risk scores gen-
erated by the Health Insights IRT models by
comparing the predicted absolute risk scores
to actual outcomes over the same time period
within appropriate prospective cohort data (in-
dependent of any data used to train the mod-
els) across a range of available SIREs. Cali-
bration of predictive models is challenging to
assess due to the limited availability of long-
term prospective data, coupled with cohort
specific biases and disease incidence varying
over time and by location due to differences
in the environment. Nevertheless, where data

is available, we find that the Health Insights
IRTs are well calibrated when the baseline data
matches the demographics of the prospective
cohort.

For example, in the case of AF, we ob-
serve good calibration for individuals of both
White (O/E [95% CI] = 1.013 [0.941, 1.085])
and Black race or ethnicity (O/E [95% CI] =
0.937 [0.771, 1.104]) using disease incidence
data from 2004 and the ARIC validation cohort
where data was collected several decades ago
[22] (Figure 5). As AF disease incidence has
substantially increased over time [30, 31], we
have also generated up-to-date disease inci-
dence baselines, which are used to return AF
results to Health Insights users.
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Figure 5: Calibration plots displaying the predicted ten year risk (x-axis) against the observed rate (y-axis) at
which individuals develop atrial fibrillation (AF) for individuals of White (left) and Black (right) self-identified race
or ethnicity (SIRE) using the ARIC validation set of individuals and 2004 baseline data. For those individuals
without a complete ten years of follow up data, we computed the predicted risk of developing disease for
the timeframe that we have observational data for the individual (censored predicted risk). Individuals are
partitioned into approximately equal sized subgroups (either 5 or 7 subgroups depending on the number of
cases) sorted by their censored predicted risk of developing the disease, within which we compare the mean
predicted absolute disease risk to the observed disease rate (percentage of individuals in the group who get
the disease) over the following ten years; the point estimate and 95% CIs for each group are represented by
the vertical blue error bars. The fitted blue line is based on the parametric fit of the data along with 95% CIs.
The dashed black line is the y = x line and corresponds to ideal calibration.

Inclusion of the PRS in the risk score
improves the predictive performance
of IRTs

Calibration alone, whilst critical for providing
individuals with accurate estimates of their
absolute risk of developing diseases, does
not highlight the value of including PRS to
generate personalised risk scores. This is re-
flected in the improved ability to distinguish
between cases and controls as measured by
Harrell’s C [25] for all available SIRE, sex and
disease combinations (with ≥250 cases and
controls; Figure 6). The greatest increase in
performance, when considering a ten year risk
window, occurs for T2D amongst White males,

with Harrell’s C increasing from 0.523 with the
baseline model to 0.672 for the IRT model.
This is also reflected by the increase in the
range of the absolute risk scores across all
traits (Figure 7). For example, ten year T2D
absolute risk scores for White males in ARIC
lie between 7.05% and 10.95% for the baseline
model compared to 0.5% and 64.11% for the
IRT model. We note that the bimodal distri-
bution of the absolute risk scores using the
baseline model (Figure 7) results from sub-
stantial differences in disease incidence be-
tween males and females. These results high-
light the value of using an individual’s PRS to
provide tailored estimates of their absolute
disease risk within a given time window.
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Figure 6: Difference in performance (as measured by Harrell’s C) between the IRT model that contains the PRS
and the baseline model that does not include the PRS on the y-axis for each self-identified race or ethnicity
(SIRE) and sex combination (with ≥250 cases and controls) on the x-axis for all of the Health Insights traits
considering all appropriate risk windows. Harrell’s C difference for both sexes combined is displayed in blue,
for females in orange and for males in yellow.
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Figure 7: Distribution of the absolute risk scores for the baseline model (blue), which does not include the
PRS, and the IRT model, which includes the PRS (orange), for all of the Health Insights traits considering all
appropriate risk windows. Atrial fibrillation, cardiovascular disease, hypercholesterolemia, hypertension and
type 2 diabetes distributions use absolute risk scores generated for White individuals in the ARIC cohort, breast
and prostate cancer distributions use absolute risk scores generated for White non-Hispanic individuals of the
appropriate sex in the UKB cohort and the osteopenia distribution uses absolute risk scores generated for
White individuals in the SoF and MrOS cohorts. The bimodal distribution of the absolute risk scores using the
baseline model results from substantial differences in disease incidence between males and females.

Summary
The Health Insights product includes person-
alised risk calculations (IRTs) for eight dis-
eases that are common in the US popula-
tion across racial/ethnic groups, costly to soci-
ety, and can be mitigated by lifestyle changes

and/or accessing readily-available medical
pathways and screening programs. The IRTs
combine personalised US-appropriate incident
rates of disease, based on self-reported age,
sex and race/ethnicity, with an individual’s
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inherited polygenic disease risk, resulting in
well-calibrated, individualised disease risk es-
timates. The analyses presented in this paper
establish the evidence for the accuracy of the
risk estimates and their ability to distinguish
between those likely and unlikely to develop
disease.

Health Insights does not consider medi-
cal history or other clinical and environmental
risk factors that are known to influence dis-
ease risk. Rather, it uses limited, but read-
ily available, self-reported user information, a
property that maximizes ease-of-use and en-
ables validation across all groups of users.
The information provided should therefore be
seen as complementary to that used by spe-
cific, disease-focused (non-genetic) disease
risk calculators.

Supplementary tables
Trait Comparator AUC

Atrial fibrillation 23andMe 0.62
Atrial fibrillation Color Health 0.57
Breast cancer Color Health 0.63
Hypertension 23andMe 0.62
Type 2 Diabetes 23andMe 0.652

Supplementary table 1: PRS performance (AUC) in
individuals of EUR ancestry of comparator PRS. In
all cases the AUC is calculated using models that
regress the PRS against disease status in the ab-
sence of any covariates.
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